2019 ANNUAL DRINKING WATER QUALITY REPORT

Spring Valley WSC

OUR DRINKING WATER MEETS OR EXCEEDS ALL FEDERAL (EPA) DRINKING WATER REQUIREMENTS

This report is a summary of the quality of the water that we provide to our customers. The analysis was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. We hope this information helps you become more knowledgeable about what is in your drinking water.

Where Do We Get Our Water? - Our drinking water is obtained from the Trinity Aquifer using wells and surface water sources (Lake Belton) through the Bluebonnet WSC. A Source Water Susceptibility Assessment for your drinking water sources is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus our source water protection strategies. Some of this source water assessment information will be available later this year on Texas Drinking Water Watch at http://dww.tceq.state.tx.us/DWW/. For more information on source water assessments and protection efforts at our system, please contact us.

Water Sources - The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

All drinking water may contain contaminants. When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling EPA's Safe Drinking Water Hotline 1.800.426.4791.

Secondary Constituents - Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document, but they may greatly affect the appearance and taste of your water.

SPECIAL NOTICE - Required language for ALL community public water supplies: You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at 1.800.426.4791.

PUBLIC PARTICIPATION OPPORTUNITIES - If you would like to talk to an Aqua Texas representative about your Water Quality Report, please call us at 1.877.987.2782, write us, or visit our website at <u>AquaAmerica.com</u>. For more information from the EPA, you may call the U.S. Environmental Protection Agency Safe Drinking Water Hotline 1.800.426.4791.

En Español - Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre este informe en español, favor de llamar al tel. 1.254.776.1999 para hablar con una persona bilingüe en español.

Spring Valley WSC TX1550044

DEFINITIONS

Maximum Contaminant Level (MCL)

The highest permissible level of a contaminant in drinking water. MCLs are set as close as possible to MCLGs as feasible using the best available technology.

Maximum Contaminant Level Goal (MCLG) - The level contaminant in drinking water below which there is no or expected health risk. MCLGs allow a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of a disinfectant to control microbial contamination.

Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL) - The concentration of a contaminant which, if exceeded triggers treatment or other requirements that a water system must follow.

ppm - parts per million, or milligrams per liter (mg/l)

ppb - parts per billion, or micrograms per liter (µg/L)

ppt - parts per trillion, or nanograms per liter

ppq - parts per quadrillion, or picograms per liter

NTU - Nephelometric Turbidity Units

MFL - million fibers per liter (a measure of asbestos)

pCi/L - picocuries per liter (a measure of radioactivity)

About the following pages - The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

Maximum Residual Disinfectant Level- Spring Valley Distribution

Year (Range)	Disinfectant	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Unit of Measure	Source of Disinfectant
2019	Chloramine Residual	2.05	0.6	3.1	4	4	ppm	Disinfectant used to control microbes

Disinfection Byproducts- Spring Valley Distribution System

Year	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Unit of Measure	Source of Contaminant	
2019	Total Haloacetic Acids	17.8	13.6	24.9	60	NA	ppb	Byproduct of drinking water	
2019	Total Trihalomethanes	20.8	11.2	31.4	80	NA	ppb	disinfection	

Lead and Copper- Spring Valley Distribution

Year (Range)	Contaminant	The 90th Percentile	Number of Sites Exceeding Action Level	MCLG	Action Level	Unit of Measure	Source of Contaminant	
2017	Lead	1.3	0	0	15	ppb	Correction of boundhold plumbing	
2017	Copper	0.12	0	1.3	1.3	ppm	Corrosion of household plumbing	

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Aqua is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your cold water tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Spring Valley WSC TX1550044

Inorganic Contaminants-Spring Valley Wells

Year (Range)	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Unit of Measure	Source of Contaminant	
2018	Barium	0.0563	0.0509	0.0617	2	2	ppm	Erosion of natural deposits	
2018	Fluoride	0.44	0.21	0.68	4	4	ppm	Erosion of natural deposits	
2019	Nitrate	1.02	0.97	1.08	10	10	ppm	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	
2015	Combined Radium 226 & 228	1.5	1.5	1.5	5	0	pCi/L	Erosion of natural deposits	
2018	Gross alpha	1.8	Not Detected	3.6	15	0	pCi/L	Erosion of natural deposits	
2018	Beta/photon emitters	5	5	5	50	0	pCi/L Mrem/yr*	Decay of natural and man-made deposits	

^{*}Values reported for beta/photon emitters are in pCi/L. EPA considers 50 pCi/L to be the level of concern for beta particles. The MCL for beta particles is 4 millirems per year (a measure of radiation absorbed by the body).

Inorganic Contaminants-Bluebonnet Surface Water

norganic Containmants-Didebonnet Curiace Water										
Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Unit of Measure	Source of Contaminant			
Antimony	1.1	1.1	1.1	6	6	ppb	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder.			
Barium	0.0784	0.0784	0.0784	2	2	ppm	Erosion of natural deposits			
Fluoride	0.18	0.18	0.18	4	4	ppm	Erosion of natural deposits			
Nitrate	0.9	0.9	0.9	10	10	ppm	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits			
Combined Radium 226 & 228	1.5	1.5	1.5	5	0	pCi/L	Erosion of natural deposits			
Beta/photon emitters	4.7	4.7	4.7	50	0	pCi/L Mrem/yr*	Decay of natural and man-made deposits			
	Antimony Barium Fluoride Nitrate Combined Radium 226 & 228 Beta/photon emitters	Antimony 1.1 Barium 0.0784 Fluoride 0.18 Nitrate 0.9 Combined Radium 226 & 228 Beta/photon emitters 4.7	Contaminant Level Level Antimony 1.1 1.1 Barium 0.0784 0.0784 Fluoride 0.18 0.18 Nitrate 0.9 0.9 Combined Radium 226 & 228 1.5 1.5 Beta/photon emitters 4.7 4.7	Contaminant Level Level Level Antimony 1.1 1.1 1.1 Barium 0.0784 0.0784 0.0784 Fluoride 0.18 0.18 0.18 Nitrate 0.9 0.9 0.9 Combined Radium 226 & 228 1.5 1.5 1.5 Beta/photon emitters 4.7 4.7 4.7	Contaminant Level Level Level MCL Antimony 1.1 1.1 1.1 6 Barium 0.0784 0.0784 0.0784 2 Fluoride 0.18 0.18 0.18 4 Nitrate 0.9 0.9 0.9 10 Combined Radium 226 & 228 1.5 1.5 1.5 5 Beta/photon emitters 4.7 4.7 4.7 50	Contaminant Level Level Level MCL MCLG Antimony 1.1 1.1 1.1 6 6 Barium 0.0784 0.0784 2 2 Fluoride 0.18 0.18 0.18 4 4 Nitrate 0.9 0.9 0.9 10 10 Combined Radium 226 & 228 1.5 1.5 1.5 5 0 Beta/photon emitters 4.7 4.7 4.7 50 0	Contaminant Level Level Level MCL MCLG Measure Antimony 1.1 1.1 1.1 6 6 ppb Barium 0.0784 0.0784 2 2 ppm Fluoride 0.18 0.18 0.18 4 4 ppm Nitrate 0.9 0.9 0.9 10 10 ppm Combined Radium 226 & 228 1.5 1.5 1.5 5 0 pCi/L Beta/photon 4.7 4.7 4.7 50 0 pCi/L			

^{*}Values reported for beta/photon emitters are in pCi/L. EPA considers 50 pCi/L to be the level of concern for beta particles. The MCL for beta particles is 4 millirems per year (a measure of radiation absorbed by the body).

Organic Contaminants- Spring Valley Wells

Year (Range)	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Unit of Measure	Source of Contaminant
2019	Atrazine	0.65	0.57	0.73	3	3	ppb	Runoff from herbicide used on row crops
2019	Ethylbenzene	0.3	Not Detected	0.6	700	700	ppb	Discharge from petroleum refineries.
2019	Xylene	0.0028	0.0017	0.0038	10	10	ppm	Discharge from petroleum factories; Discharge from chemical factories.

Spring Valley WSC TX1550044

Organic Contaminants- Bluebonnet Surface Water

Year (Range)	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Unit of Measure	Source of Contaminant
2019	Atrazine	0.65	0.65	0.65	3	3	ppb	Runoff from herbicide used on row crops

Turbidity-Bluebonnet Surface Water

Year (Range)	Contaminant	Highest Single Measurement	Lowest Monthly % of Samples Meeting Limits	Turbidity Limits	Unit of Measure	Source of Contaminant
2019	Turbidity	0.15	100%	0.3	NTU	Soil Runoff

Total Organic Carbon (TOC) - The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section.